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Abstract

This paper studies the combined radiation and natural convection in an open vertical cylinder. The cylinder is heated through its side-
wall at a constant heat flux and cooled at the top surface via radiation. The high order finite difference method is used to simulate the
fluid flow and heat transfer inside the cylinder and the internal radiation is solved using discontinuous finite element method. The two
numerical methods are coupled through an iterative process. Based on the numerical simulations, a linear stability analysis is carried out
to investigate how the internal radiation changes the stability of the flow.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that convective flow in materials pro-
cessing systems causes major macroscopic defects in the
crystal produced [1]. In the efforts of developing of convec-
tion control mechanism that can be used to develop better
quality crystals, it is crucial to understand the physics
underlying the convection and the stability of the flow.
There are extensive previous works on this topic. In most
of the previous investigations on convective heat transfer,
it is a common practice that the contribution of thermal
radiation is neglected. However, there are many engineer-
ing applications in which the radiation can significantly
interacts with the convection and change the heat transfer
mechanism [2,3]. In materials processing systems, the fact
that the melt is absorbing, emitting and scattering in ther-
mal radiation frequency range makes it important to
understand the interaction between the convective heat
transfer and the thermal radiation [4–6]. The changes in
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thermal field caused by the radiation may change the con-
vective flow field and furthermore, change the crystal struc-
ture of the materials produced.

Several previous works are found on the problem of
combined radiation and convection [7–10]. A review on
this problem is given by Yang [11]. More recently, Tan
and Howell [12] presented a numerical study on combined
thermal radiation and convection in a square enclosure.
The radiative transport equation is discretized using prod-
uct-integral method while the equations of momentum and
energy conservations are discretized using finite difference
method. It was found that the presence of internal radia-
tion changes the temperature and flow fields significantly.
Kassemi and Naraghi [13] investigated the combined radi-
ation and convection in a square box in both terrestrial and
microgravity environment using discrete exchange factor
method. Their results have shown that the radiation signif-
icantly changes the flow and temperature fields in both
terrestrial and microgravity applications. In microgravity
environment, convection is weak and radiation can easily
become the dominant heat transfer mode. The effect of
internal radiation on oxide melts was discussed by Tsukada
et al., [14]. The P-1 method was used to approximate the
radiative heat transfer. The solid-liquid interface shape
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Nomenclature

A aspect ratio
f body force
Gr Grashof number
F force matrix
g gravity acceleration
H height of crucible
h heat transfer coefficient
I radiative intensity
K stiffness matrix
k thermal conductivity
M Mach number
Ma Marangoni number
m Azimuthal wave number
n out normal of boundary
Pr Prandtl number
P kinematic pressure
p dimensionless pressure
q heat flux
R cylinder radius
r position vector
Ra Rayleigh number
Rad radiation number
Rec Marangoni Reynolds number
s direction vector
T temperature
Tamb ambient temperature
T0 reference temperature
t time

U velocity component
u velocity vector

Greek symbols

a thermal diffusivity
b thermal expansion coefficient extinction coeffi-

cient
c negative rate of change of surface tension with

temperature
e emissivity
h azimuthal angle
r surface tension scattering coefficient
rs Stefan–Boltzmann constant
/ shape function
u polar angle
j absorption coefficient
l viscosity
m kinematic viscosity
q density
X radiation control angle
x complex wave speed

Subscripts

amb ambient
0 reference state
w wall
z z direction
h h direction
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becomes more convex to the melt as the optical absorption
coefficients of both the crystal and the melt decreases. A
numerical model for transport and solidification phenom-
ena in oxide melts with and without the presence of an
applied magnetic field was proposed by Shu et al. [6].
The model is base finite element solution of Navier–Stokes
equations with the induced Lorentz force serving as the
damping source. The radiative transfer equation was
solved by discontinuous finite-element method. The stabil-
ity of the combined convection and radiation was studied
by Arpaci and Gözüm [15] and Arpaci and Bayazitoğlu
[16], who found that the internal radiation stabilized the
natural convection. Most recently, researches on the com-
bined radiation and convection are be found by Lienhard
V [17] and Bdéoui and Soufiani [18].

In this paper, the Rayleigh–Bénard–Marangoni convec-
tion in a vertical cylinder is investigated numerically. The
cylinder is heated through its sidewall and cooled at the
top free surface. The fluid flow and heat transfer equations
are solved using high order finite difference method and a
discontinuous finite element model is developed to solve
the radiative transfer equation. The internal radiation is
coupled into the convection through radiative heat source
via an iterative process. Numerical simulations are carried
out at various radiative parameters and significant changes
in temperature profiles are observed due to the internal
radiation. A linear stability analysis is carried out base
on the numerical simulation to investigate how the internal
radiation may change the stability diagrams of the melt
flow at various radiative boundary conditions. The mecha-
nism of the instability is also discussed.

2. Problem statements

The crucible under investigation, which is essentially a
vertical cylinder with open top surface, is shown in
Fig. 1. The cylinder has a height of H and a radius of R.
A constant heat flux is supplied at the vertical wall and
the bottom is adiabatic. At the top surface, the radiative
heat exchange with the ambient is assumed. The cylindrical
coordinate system used in the present study is also shown
in Fig. 1.

2.1. Governing equations

The melts inside the crucible is considered incompress-
ible fluid to which Boussinesq approximation applies.
The surface tension is only a function of temperature,
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Fig. 1. Schematics of the vertical cylinder under investigation.
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r ¼ r0 � cðT � T 0Þ; ð1Þ

where r is the surface tension, T the fluid temperature,
c ¼ �dr=dT the negative rate of change of surface tension
with temperature and subscript 0 denotes a reference state.
The melt flow is governed by the conservational laws of
mass, momentum and energy, which are given as

r � u ¼ 0; ð2Þ
ou

ot
þ ðu � rÞu ¼ �rp þr2u� GrðT � T 0Þg; ð3Þ

oT
ot
þ ðu � rÞT ¼ 1

Pr
r2T �r � qðrÞ; ð4Þ

where u is the velocity vector, t the time, p the pressure, g

the unit downward vector in z direction, T the temperature,
T0 the reference temperature and r � qðrÞ the radiative
heat source. Gr is the Grashof number defined by Gr ¼
gbT 0R

m2 and Pr ¼ m
a the Prandtl number, where b is the ther-

mal expansion coefficient, m the kinetic viscosity, and a
the thermal diffusivity. Eqs. (2)–(4) were obtained using
following scale factors: R for length, m/R for velocity, T0

for temperature, R2=m for time, and qm2=R2 for pressure,
where q is the density.

The governing equations (Eqs. (2)–(4)) are subject to the
following boundary conditions. At the free surface
ðz ¼ H and 0 < r < RÞ,
our

oz
¼ Rec

oT
or
; ð5Þ

ouh

oz
¼ Rec

oT
roh

; ð6Þ

uz ¼ 0; ð7Þ
oT
oz
¼ �Rad T 4 � T 4

amb

� �
; ð8Þ

where Rec ¼ cT 0R
lm is the Marangoni–Reynolds number,

Rad ¼ rseT 3
0
R

k the radiation number, T amb the temperature
of ambient air, l the dynamic viscosity, rs the Stefan–
Boltzmann constant, e the emissivity, and k the thermal
conductivity. Considering the temperature range at which
the material processing systems work, only radiative heat
loss is considered at the free surface. At the vertical wall
ð0 6 z 6 H ; r ¼ RÞ,
ur ¼ uz ¼ uh ¼ 0; ð9Þ
oT
or
¼ q � nr; ð10Þ

where q is the heat flux at the vertical wall and nr the unit
vector in r direction. At the bottom ðz ¼ 0; 0 6 r 6 RÞ

ur ¼ uz ¼ uh ¼
oT
oz
¼ 0: ð11Þ

When temperature gradient along the free surface is low
enough, flow in the crucible is axisymmetric, therefore at
the centerline ð0 6 z 6 H ; r ¼ 0Þ,
ur ¼ uh ¼ 0: ð12Þ
ouz

or
¼ oT

or
¼ 0: ð13Þ

Note that in Eqs. (5) and (6), the surface tension gradient
induced by temperature gradient along the free surface is
balanced by shear stress. Eq. (7) assures that the free sur-
face is flat and non-deformable.

2.2. Radiative transfer equation

The radiative heat transfer in the melt is described by the
following integral-differential equation [2,3]:

oIðr; sÞ
os

¼�bðrÞIðr; sÞþjðrÞIbðrÞþ
rðrÞ
4p

Z
4p

Iðr; s0ÞUðs; s0ÞdX0

ð14Þ
where I(r,s) is the radiation intensity, bðrÞ ¼ jðrÞ þ rðrÞ the
extinction coefficient, j(r) the absorption coefficient, r(r)
the scattering coefficient and X the solid angler,

To solve the radiative transfer equation given in Eq.
(14), the following radiative boundary conditions are
applied to the cylinder. At the vertical wall, bottom and
top surface, diffusive grey surfaces are assumed as,

Iðr; sÞ ¼ eðrÞIbðrÞ þ
1� eðrÞ

p

Z
s0 �nw<0

Iðr; s0Þjs0 � nwjdX0; ð15Þ

where e is the boundary emissivity, nw the normal direction
of the boundary. Along the center line r ¼ 0, symmetric
boundary condition is used for the radiative transfer equa-
tion as

Iðr; sÞ ¼ Iðr; s�Þ
n � s ¼ �n � s�

s� s� � n ¼ 0

8><
>: ð16Þ

where the s* is the symmetric vector of radiation direction
s, in respect to the tangent of the boundary, with both s and
s* lying on the plane of t–n.
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The internal radiation is coupled with other heat trans-
fer modes through radiative heat source, which is calcu-
lated by

r � qðrÞ ¼ j 4rsT 4ðrÞ �
Z

4p
Iðr; sÞdX

� �
; ð17Þ

where rs is the Stefan–Boltzmann constant and r � qðrÞ is
the radiative heat source in Eq. (4) to couple the internal
radiation with other modes of heat transfer. At the bound-
aries, the heat flux due to the internal radiation is calcu-
lated by

qwðrÞ ¼ e rsT 4
w �

Z
s�nw<0

Iðr; sÞs � nw dX

� �
ð18Þ

where T w is the wall temperature. The boundary heat flux is
positive when the flux is pointing outward. The boundary
conditions presented in the last section are modified to
balance the radiative heat flux given in Eq. (18).
2.3. Linear stability analysis

The governing equations and the boundary conditions
presented above are solved numerically for axisymmetric
base flow. Stability of the obtained velocity field

�Ur; �U z; 0ð Þ, pressure �P and temperature �T are investigated
by applying infinitesimal disturbance to the base flow

Ur

Uz

U h

P

T

0
BBBBBB@

1
CCCCCCA
¼

�U r

�U z

0
�P
�T

0
BBBBBB@

1
CCCCCCA
þ

Û rðr; zÞ
Û zðr; zÞ
Û hðr; zÞ
P̂ ðr; zÞ
T̂ ðr; zÞ

0
BBBBBB@

1
CCCCCCA

expðimhþ -tÞ: ð19Þ

The last term of the right hand side of Eq. (19) is the small
perturbation applied to the base flow where m is the azi-
muthal wave number, i the square root of �1 and x the
complex wave speed which is given by

- ¼ -r þ i-i: ð20Þ

Here xi is the azimuthal frequency of oscillation, and
xr determines the degree of amplification or damping.
According to linear stability, when xi ¼ 0, the disturbance
grow or decay monotonically. When xi 6¼ 0, the perturba-
tion is oscillatory with wave speed of xi. The perturbation
are decays and the base flow is stable if xr < 0. When
xr > 0 the perturbation grows with time and the base flow
loses its axisymmetry. The neutral state is determined by
xr ¼ 0.

To carry out the stability analysis, the governing equa-
tions are re-written with an assumption of slight compress-
ibility as [19],
op
ot
þ ðu � rÞP þ 1

M
r � u ¼ 0; ð21Þ

ou

ot
þ ðu � rÞu ¼ � 1

M
rP þ r2uþ 1

3
rðr � uÞ

� �
þ f; ð22Þ

oT
ot
þ u � rT ¼ 1

Pr
r2T �r � qðrÞ: ð23Þ

Here, M denotes the Mach number in the fluid, P the kine-
matic pressure and f is the body force. Substituting Eqs.
(19) and (20) into Eqs. (21)–(23) and subtracting the base
flow from it, we obtain the final perturbation equations
from which the complex wave speed x can be determined.
For the stability analysis, the basic state is solved using the
governing equations with slight compressibility assump-
tion. The slight compressibility is introduced there to over-
come the singularity of the spectrum of generalized
eigenvalue problem of incompressible flow [19].
3. Numerical schemes

Details on the numerical schemes used in the present
study are given by Ai [20], hence only a brief description
is presented here. The base flow is solved using high order
finite difference method because of its spectral-like accu-
racy, computational efficiency and outstanding flexibility
in dealing with irregular geometry and various boundary
conditions. The spatial derivatives are discretized by the
compact method. In the present model, the high order
finite difference model is developed using compact central
difference scheme, which has a fourth order accuracy in
the approximations of both the first and the second order
spatial derivatives. The fourth-order compact approxima-
tion derived by means of 5-point Legendre interpolation
is adopted here. In the present numerical model, time inte-
gration is carried out by using the method of the combined
Runge–Kutta and fractional step, as presented by Le and
Moin [21]. The method is based on the predictor–corrector
algorithm, which is one of the Runge–Kutta methods. In
this method, each time step is divided into three sub-steps.
At each sub-step, the KM time-splitting scheme developed
by Kim and Moin [22] is used along with the staggered
mesh to handling the pressure term.

The discontinuous finite element method is applied to
solve the radiative transfer equation. Same as of its contin-
uous counterpart, the first step of the discontinuous finite
element formulation is to discretize the computational
domain into a collection of finite elements. It is worth not-
ing that using the discontinuous finite element, the solid
angles are discretized in the framework of finite element
space so that the conservation laws are observed, while
most of the other numerical methods the solid angle inte-
gration is carried out using discrete ordinates. At the inner
element boundaries, the inflow jump conditions applied

½I �j ¼
½I �j if n � s < 0

0 if n � s > 0

�
; ð24Þ



Table 1
Comparison of critical Rayleigh numbers at various azimuthal wave
numbers between our results and those of Charlson and Sani [22,23] and
Wanschura et al. [24]

m The present
model

Charlson and Sani
[22,23]

Wanschura et al.
[24]

1 2914 3164 2875
2 2514 2687 2500
3 3342
4 4952
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m=1

m=2
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where ½I �j ¼ Iþj � I�j is the jump across the element
boundaries.

Following the standard procedure for discontinuous
finite element formulation, Eq. (14) can be solved. Assem-
bling all these discretized terms together for each element,
the final discretized equation can be expressed in terms of
the following matrix form:

KU ¼ F; ð25Þ

where U contains the unknown intensity vector and the
matrix elements are summarized as follows:

Kij¼
Z

V e

/ir/j �
Z

DXl

sdXdV þ
Z

V e

/i/jbdV
Z

DXl

dX

þ
XNd

k¼1

maxð0;�
Z

DXl

s �nk dXÞ
Z

Ck

/i/j dC; ð26Þ

F i¼
Z /i

V e

Sðr;sÞdV
Z

DXl

dXþ
XNd

k¼1

maxð0;�
Z

DXl

s �nk dXÞ
Z

Ck

/i/jINB;j dC;

ð27Þ

where Nd is the number of boundaries associated with the
ith element. Full details of the discontinuous finite element
solution of the radiative transfer equation are given by Cui
and Li [23].

The combined heat convection and radiation calcula-
tions require iterative procedures. In the present study,
the temperature distribution is calculated using the higher
order finite difference method while the internal radiation
intensities are calculated by the discontinuous finite ele-
ments. The iteration starts with the calculation of temper-
ature without radiative heat transfer. The radiative
intensity distribution, and hence the divergence of the radi-
ative heat fluxes, are then calculated using the calculated
temperature field. The radiation heat flux divergence is
then treated as a heating source and the temperature distri-
bution is updated. This process repeats itself until a conver-
gence on temperature and intensity is obtained.

Using the compact high order finite difference method
the final perturbation equations along with the boundary
conditions are discretized, and the final equation is written
in the form of an eigenvalue matrix equation,

AX ¼ xBX; ð28Þ

where A and B are coefficient matrices, X ¼ fûr; ûz; ûh;
T̂ ; p̂gT is an assembling vector of the eigenfunction. This
matrix equation is solved by linear fractional transforma-
tion with banded matrix structure taken into account using
the LAPACK library. The obtained leading eigenvalue
determines the stability of the axisymmetric base flow.
1700
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Fig. 2. Critical Rayleigh numbers for Rayleigh–Bénard convection in a
vertical cylinder for m ¼ 1 and m ¼ 2 at various aspect ratios.
4. Results and discussion

The present numerical model is used to study the Ray-
leigh–Bénard convection in a vertical cylinder. Consider a
horizontal layer of fluid confined by a vertical cylindrical
wall. The top and bottom surfaces of the liquid layer are
in contact with rigid walls that are kept at different temper-
atures of 0 and 1, respectively. The sidewall is adiabatic. All
solid walls are no-slip. This problem has been studied
extensively [24–26]. Its neutral curves have been well estab-
lished. For a cylinder of R ¼ H ¼ 1, the critical Rayleigh

number Ra ¼ gbDTH3

lj

	 

at various azimuthal wave numbers

from the present numerical model are compared with those
from the Charlson and Sani [24,25] and Wanschura et al.
[26]’s work in Table 1. The most dangerous mode is found
to be m ¼ 2 by all of the three models. The critical Rayleigh
numbers obtained from the present model are with in ±2%
of those of Wanschura et al. [26] and ±10% of those of
Charlson and Sani [24,25]. The critical Ra at various aspect
ratios A ¼ R

H

� �
for m ¼ 1 and 2 are plotted in Fig. 2. The

critical Ra decreases as the aspect ratio of the cylinder is
increased because the lager aspect ratio decreases the stabi-
lizing effect of the sidewall. As the aspect ratio increases,
the critical Ra for both azimuthal wave numbers approach
the critical Rayleigh number for an infinite liquid layer,
which is 1708 [27].

When the top surface is open to the ambient and the
effect of the buoyancy is ignored ðRa ¼ 0Þ, convection
may be driven by the Marangoni effect. For this case, the

Critical Marangoni numbers Ma ¼ cDTH
lj

	 

obtained using

the present model are compared with those from Dauby
et al. for a cylinder of aspect ratio of 1 in Table 2. As shown
in the table, the present model is in good agreement with



Table 3
Velocity at r ¼ z ¼ 0:6 calculated using different uniform meshes for a
crucible of R ¼ H ¼ 1 with Gr ¼ 6� 105;Rec ¼ 104; j ¼ 1 m�1; e ¼
1 and r ¼ 0 m�1

Nr Nz Velocity

16 16 373.6055
21 21 398.6386
26 26 407.9187
31 31 414.7241
36 36 419.1348

Table 4
Parameters used in calculation

Parameter Value

Aspect ratio (R/H) 1.0 (0.05 m/0.05 m)
Pr 0.02
Rec 104

q 1.0
Rad 1.0
T amb 0.0
T0 1000.0 K
M 10�6

Table 2
Comparison of critical Marangoni numbers at various azimuthal wave
numbers between our results and those of Dauby et al. [26]

m This model Dauby et al. [26]

0 169 163.57
1 122 109.08
2 162 160.15
3 261 257.86
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Dauby et al’s [28] results. The critical Ma for m ¼
1 and m ¼ 2 at various aspect ratios are shown in Fig. 3.
As the aspect ratio is increased, the sidewall effects decrease
and therefore, the critical Marangoni number decreases
and approaches the theoretic prediction of that for an
unbounded layer of fluid, which is 79.6 [29]. The present
model gives the critical Ma of 80 for both wave numbers
when A ¼ 15.

4.1. Convective flow of radiation participating melt in the
vertical cylinder

A mesh dependency test is carried out to determine the
mesh to be used in the present study. For the axisymmetric
base flow, simulations were carried out for a cylinder of
R ¼ H ¼ 1 with Rec ¼ 104;Gr ¼ 6� 105; j ¼ 1 m�1; e ¼
1 and r ¼ 0 m�1. The velocities at r ¼ z ¼ 0:6 calculated
using various uniform meshes are listed in Table 3. For a
tradeoff between accuracy and computational load, a uni-
form grid with 26 nodes in both r and z directions
ðNr ¼ Nz ¼ 26Þ is chosen to be used in simulation. Any fur-
ther refinement will result in less than 2% error in base flow
simulation. At each node, the solid angle is discretized into
8 elements in both the h and u directions. The other param-
eters used in the simulations are listed in Table 4. The
tolerance for convergence is set to 10�5. The results are
plotted in dimensionless variable except for the tempera-
ture profiles, which are presented in primitive values.
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Fig. 3. Critical Marangoni numbers for Marangoni convection in a
vertical cylinder for m ¼ 1 and m ¼ 2 at various aspect ratios.
The flow and temperature fields for the convective flow
for non-participating fluid in the cylinder with Gr ¼ 105 are
shown in Fig. 4. The fluid ascends near the solid wall and
descends at the crucible center due to the Rayleigh–
Bénard–Marangoni effect. The fluid temperature is higher
near the vertical wall due to the constant heat flux supplied.
When there is internal radiation, the velocity vectors and
isothermals are plotted in Fig. 5 for Gr ¼ 105; j ¼
1 m�1; e ¼ 1 and r ¼ 0 m�1. In this case, the melt is
absorbing, emitting but not scattering. Comparing Figs.
4b and 5b, the internal radiation has a strong effect on
the temperature distribution. The temperatures near the
vertical wall and the free surface are decreased. This is
because that the presence of radiative heat flux at the
boundaries requires higher temperature gradients to
conduct the heat from the walls to ensure energy balance.
Considering the reference temperature used in this case
(1000 K), a strong heat flux is imposed at the boundaries,
which decreases the melt temperature significantly. At the
bottom, the isothermals are not orthogonal to the bound-
ary due to the radiative heat flux at the bottom. For low
Prandtl fluid flow, thermal field is only loosely coupled
with velocity field. The internal radiation does not have a
strong effect on the velocity profile.

The effects of the absorption coefficient are depicted in
Fig. 6, which shows the velocity vectors and the tempera-
ture distribution for j ¼ 5 m�1; e ¼ 1 and r ¼ 0 m�1. A
comparison between Figs. 5b and 6b indicates that the bulk
temperature is raised by approximately 6 K due to the
increase in absorption coefficient. A careful examination
of the radiative transfer equation (Eq. (14)) reveals that
when a medium is absorbing and emitting, but not scatter-
ing, the radiative intensity increases along a given direction
s. Though the absorption and emission tend to increase the



Fig. 4. Velocity field (a) and isotherms (b) of the convective flow
corresponding to Gr ¼ 105 and j ¼ e ¼ r ¼ 0.

Fig. 5. Velocity field (a) and isotherms (b) of the convective flow
corresponding to Gr ¼ 105;j ¼ 1 m�1; e ¼ 1 and r ¼ 0 m�1.
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melt temperature, the cooling effect from the boundary
radiative heat flux is strong enough to suppress the heating
effects and decrease the melt temperature.

To illustrate how the scattering changes the convective
flow pattern, simulation was carried out at Gr ¼
105; j ¼ 1 m�1; e ¼ 1 and r ¼ 1 m�1, of which the velocity
and temperature profiles are shown in Fig. 7. Only isotro-
pic scattering is considered in the present study. Compar-
ing with the non-scattering results shown in Fig. 5, it is
observed that the melt temperatures near the boundaries
are decreased due to the back scattering. The bulk melt
temperature is decreased due to the scattering.
4.2. Stability of the convective flow

A linear stability analysis is carried out based on the
numerical simulation results. The stability analysis is
focused on how the radiative parameters affect the stability
of the flow. The neutral curves are determined as functions
of the azimuthal wave numbers and the critical Grashof
numbers at which the real parts of the leading eigenvalues
vanish.

Neutral curve for the convection of non-participating
fluid in a cylinder of R ¼ H ¼ 1;Rec ¼ 104 is shown in
Fig. 8. Critical Grashof numbers are shown for azimuthal



Fig. 6. Velocity field (a) and isotherms (b) of the convective flow
corresponding to Gr ¼ 105; j ¼ 5 m�1; e ¼ 1 and r ¼ 0 m�1.

Fig. 7. Velocity field (a) and isotherms (b) of the convective flow
corresponding to Gr ¼ 105;j ¼ 1 m�1; e ¼ 1 and r ¼ 1 m�1.
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wave numbers between 0 and 8 and the most dangerous
mode is m ¼ 1. Fig. 9 shows the critical Grashof numbers
for absorbing, emitting but not scattering fluid in the same
cylinder. The absorption coefficients, j, used for the analy-
sis are 1 m�1 and 5 m�1, respectively. The emissivity at the
boundaries is 1. A comparison between Figs. 8 and 9
reveals that the presence of the internal radiation delays
the onset of the instability. The critical Grashof number
is increased from 281,224 for non-participating melt to
598,673 for j ¼ 1 m�1 and 629,856 for j ¼ 5 m�1. It is
obvious that the internal radiation stabilized the convec-
tion and the stabilization effect increases as the absorption
coefficient increases. The same stabilization effect has been
observed in several previous works [15–18]. The most dan-
gerous azimuthal mode is changed from 1 to 5 due to the
internal radiation.

The stability diagrams at two different boundary emis-
sivities, e ¼ 0:5 and 1, are depicted in Fig. 10. The neutral
curves are obtained using the same crucible as the last case.
The fluid has an absorption coefficient of 1.0 m�1. As it is
expected, the critical Grashof numbers are increased due to
the internal radiation. The critical Grashof number is
476,837 for e ¼ 0:5 and 598,673 for e ¼ 1. The most dan-
gerous azimuthal mode is found to be 5.

Fig. 11 shows the neutral curves for an absorbing, emit-
ting and scattering medium in the same crucible. The melt
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1 and r ¼ 0. The critical Grashof number for the corresponding radiative
non-participating case is 281,224.
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Fig. 10. Critical Grashof numbers at e ¼ 0:5 and 1 for j ¼
1 m�1 and r ¼ 0. The critical Grashof number for the corresponding
radiative non-participating case is 281,224.
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is absorbing at j ¼ 1 m�1 and the stability curves are
obtained at two different scattering coefficients of 0 m�1

and 1 m�1, respectively. With the presence of the scatter-
ing, the critical Grashof number is further increased, which
is 641,827 when r ¼ 1 m�1. Again, the most dangerous
mode is found to be 5.
Fig. 12. Eigenvalue spectrum of critical base flow for R ¼ H ¼ 1;Grcr ¼
598; 673 at j ¼ 1 m �1; e ¼ 1 and r ¼ 0 m�1.

Table 5
First five leading eigenvalues for R ¼ H ¼ 1;Grcr ¼ 598; 673 for j ¼
1 m�1; e ¼ 1 and r ¼ 0 m�1

No. xr xi

1 �3.9947 � 10�5 �1.31879 � 10�12

2 �97.8257 ±5325219.4564
3 �108.9957 ±783.7622
4 �126.3728 ±1841190.8140
5 �131.8824 ±8505316.6937
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Fig. 11. Critical Grashof numbers at r ¼ 0 m�1 and 1 m�1 for e ¼
1 and j ¼ 1 m�1. The critical Grashof number for the corresponding
radiative non-participating case is 281,224.
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Fig. 13. Evolution of perturbation energy in the axisymmetric plane at
h ¼ 0 for R ¼ H ¼ 1;Grcr ¼ 598;673;Rec ¼ 104;j ¼ 1 m�1; e ¼ 1 and r ¼ 0
m�1: (a) first and (b) second leading eigenvalue.
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Fig. 14. Evolution of perturbation energy in the axisymmetric plane at
h ¼ 0 for R ¼ H ¼ 1;Gr ¼ 598; 700;Rec ¼ 104; j ¼ 1 m�1; e ¼ 1 and r ¼
0 m�1 : (a) first and (b) second leading eigenvalue.
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The typical eigenvalue spectrum at the critical state
of Grcr ¼ 598; 673 for j ¼ 1 m�1; e ¼ 1 and r ¼ 0 m�1 is
shown in Fig. 12. The eigenvalues could be either real num-
bers or conjugate complex pairs. The eigenvalue spectrum
has T-shape structure. Table 5 lists the first five leading
eigenvalues. The first leading eigenvalue is a real number
while the rest four eigenvalues appear to be conjugate com-
plex pairs, which implies that the first leading eigenvalue is
in stationary mode while the following four eigenvalues are
in Hopf mode. The transient evolution of the perturbation
energy corresponding to the first two leading eigenvalues
are plotted in Figs. 13 and 14 for Gr = 598,673 and
598,700, respectively. Fig. 13 shows the transient perturba-
tion energy for the critical state at Gr = 598,673. The per-
turbation energy of the first leading eigenvalue decreases
monotonically as time is increased (Fig. 13a). This mono-
tonic profile confirms the T-shape eigenvalue spectrum
shown in Fig. 12, in which the leading eigenvalue appears
to be a real number ðxi ¼ 0Þ. The perturbation energy cor-
ig. 15. Pattern of perturbation of for the leading eigenvalue at the
¼ 0:5 corresponding to R¼H ¼ 1;Rec ¼ 104;Grcr ¼ 598;673;m¼ 5;j¼
m�1; e¼ 1 and r¼ 0 m�1: (a) energy at t¼ 2:5� 10�8; (b) temperature at
¼ 2:5� 10�8.
F
z
1
t
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responding to the second leading eigenvalue osculates at a
frequency of xi, which is shown in Fig. 13b. Fig. 14 shows
the temporal evolution the perturbation energy corre-
sponding to the first two leading eigenvalues for an
unstable base flow at Gr = 598,700. For this case, the per-
turbation energy of the leading eigenvalue increases mono-
tonically, which confirms that the base flow is unstable. An
oscillatory second leading eigenvalue perturbation energy
profile similar to that for the critical case is observed in
Fig. 13b.

The contours of the perturbation energy and tempera-
ture for the leading eigenvalue are shown in Fig. 15. As it
is shown in the figure, because of the most dangerous mode
of 5, the contours consist of five pairs of maxima and min-
ima along the azimuthal direction. Fig. 16 shows the 3-D
flow structure and free surface flow pattern constructed
using the leading eigenvalue at the critical state of
R ¼ H ¼ 1; Rec ¼ 104;Grcr ¼ 598; 673 and m ¼ 5 for j ¼
1 m�1; e ¼ 1 and r ¼ 0 m�1. For this case, 10 co-rotating
Fig. 16. Three-dimensional flow pattern of the leading eigenvalue
corresponding to the critical state for R ¼ H ¼ 1;Rec ¼ 104;Grcr ¼
598673 and m ¼ 5: (a) 3-D flow structure; (b) top surface flow pattern.
loops are observed along the azimuthal direction, which
confirms the perturbation contours plotted in Fig. 15.

5. Summary

In this paper, a numerical model was developed to sim-
ulate the Rayleigh–Bénard–Marangoni convection in a lat-
erally heated vertical cylinder. Both radiation participating
and non-participating fluids were considered. The discon-
tinuous finite element was incorporated into the high order
finite difference model presented in the last chapter via an
iterative process.

The numerical has shown that the internal radiation has
a significant effect on the convective flow pattern in the cyl-
inder. The radiative heat flux imposed by the domain
boundaries induced higher temperature gradient near the
boundaries, which decreased the bulk temperature. In the
mean time, the melt was heated by combined absorption,
emission and scattering effects. However, the boundary
heat flux was strong enough to suppress the internal radia-
tion effect.

A linear stability analysis was carried out at various
radiative boundary conditions based on the numerical sim-
ulation. It was found that the internal radiation stabilized
the convective flow. The most dangerous mode changed
from 1 to 5 due to the internal radiation. The instability
mechanism is also discussed in this paper.
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